A microstrip patch antenna using novel photonic band - gap structures

نویسندگان

  • Yongxi Qian
  • Roberto Coccioli
  • Dan Sievenpiper
  • Vesna Radisic
  • Eli Yablonovitch
  • Tatsuo Itoh
چکیده

Printed antennas exemplified by the microstrip patch antenna offer an attractive solution to compact, conformal and low cost design of modem wireless communications equipment, RF sensors and radar systems. Recent applications have pushed the frequency well into the ram-wave region even in the commercial arena as evidenced by the worldwide race to develop advanced collision warning radar systems for automobiles at the 76 GHz band.[1] Microstrip-based planar antennas fabricated on a substrate with a high dielectric constant (Si, GaAs and InP) are strongly preferred for easy integration with the MMIC RF front-end circuitry. However, it is well known that patch antennas on high dielectric constant substrates are highly inefficient radiators due to surface wave losses and have very narrow frequency bandwidth (approximately one to two percent). This situation becomes extremely severe as applications move to higher frequencies, resulting in patch antennas with reduced gain and efficiency as well as an unacceptably high level of cross polarization and mutual coupling within an array environment. Therefore, much effort has been made recently to realize high efficiency patch antennas on high permittivity substrates, including using the latest micromachining technology.[2,3]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Broadband Stacked Microstrip Patch Antenna for L-Band Operation: FDTD Modeling

This paper presents a novel implementation of an electromagnetically coupled patch antenna using air gap filled substrates to achieve the maximum bandwidth. We also propose an efficient modeling technique using the FDTD method which can substantially reduce the simulation cost for modeling the structure. The simulated results have been compared with measurement to show the broadband behavio...

متن کامل

Parametric Study of UC-PBG Structure in Terms of Simultaneous AMC and EBG Properties and its Applications in Proximity-coupled Fractal Patch Antenna

In this paper, a parametric study of conventional Uniplanar Compact Photonic Band Gap (UC-PBG) structures, with different dimensions, is investigated. The studied structure operates as an Artificial Magnetic Conductor (AMC) in which the performance is mainly characterized by the resonant frequency and bandwidth. Simulation and numerical analysis have been carried out using CST Microwave Studio ...

متن کامل

Design and Miniaturization of a Novel Fractal Microstrip Antenna for UWB Applications

A novel printed octagonal fractal microstrip antenna with semi-elliptical ground plane is presented for ultra wide band applications. The proposed antenna has a compact size of 20×20×1 mm³. The measured result of the antenna exhibits the ultra wide band characteristics from 2/9 to 14/2 GHz. In this paper, reducing antenna’s size by 35%, the same results were achieved, while small dimension frac...

متن کامل

A Capacitive Fed Microstrip Patch Antenna with Air Gap for Wideband Applications (RESEARCH NOTE)

In this paper a microstrip antenna on a suspended substrate with capacitive feed is presented. capacitive feed is created by a slot within the rectangular patch around the feed point. The proposed antenna exhibits a much higher impedance bandwidth of about 47% (S11 < −10 dB). Effects of key design parameters such as the air gap between the substrate and the ground plane, the gap width between r...

متن کامل

Development of A Compact and Low Profile ‎Cavity Backed Slot Antenna Using Microstrip ‎Gap Waveguide Technology

Proof of concept of a cavity backed slot antenna based on inverted microstrip gap ‎waveguide (IMGW) technology is presented. Since the antenna is operating based on the ‎first resonating mode of the cavity, it is more compact compared to the ordinary cavity ‎backed slot antennas in which the second cavity mode is used for radiation. Furthermore, ‎the proposed antenna element introduces lower lo...

متن کامل

Comparative Investigation of Half-mode SIW Cavity and Microstrip Hybrid Antenna Using Different Patch Shapes

A set of hybrid microstrip patch and semi-circular cavity antennas is introduced. The semi-circular cavity is implemented using Half-mode Substrate Integrated Waveguide (HMSIW) technique. Different shapes of patch include rectangular, semi-circular and equilateral triangular are excited using proximity effect by the circular SIW cavity at its TM010 mode of operation. The whole structures have b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999